
 

 

  

Abstract — This paper presents the state-of-the-art in financial derivatives 

pricing using quantum artificial neural networks. Through the presentation of 

the available literature, it was shown that this type of application is only in its 

infancy and that there are still many open questions. As an illustration, the use of 

quantum artificial neural network to solve the option pricing problem, with 

given values of underlying asset and strike price, is shown. Furthermore, it is 

shown that Greeks, such as delta and gamma, which are important measures in 

risk management, can be computed analytically with this neural network.    

 

Key words — Derivatives pricing, quantum machine learning, quantum neural 

networks. 

I. INTRODUCTION 

 ERIVATIVE contract is a financial asset whose value is based on (or 

derived from) the price of one or more underlying assets. Examples of 

these underlying assets include stocks, currencies, commodities, etc. A 

derivative contract is typically issued between an issuer and a holder, and is 

valid until its expiration date. Each derivative defines a payoff that quantifies 

what the holder stands to gain. Generically, payoffs depend on the value of 

the underlying assets across the duration of the contract. Derivative contracts 

are ubiquitous in finance with various uses from hedging risk to speculation, 

and currently have an estimated global gross market value of approximately 

$18.3 trillion dollars [1]. 

The goal of derivative pricing is to determine the value of entering a 

derivative contract today, given uncertainty about future values of the 

underlying assets and consequently the ultimate payoff. Financial derivatives 
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pricing methods are mathematical models used to calculate the fair value or 

price of financial derivatives. More about financial derivatives and their 

pricing can be found in [2] and [3].  

Some commonly used pricing methods are Black-Scholes model, Binomial 

model, Monte Carlo simulation, Finite Difference methods, Variance Swaps 

and Volatility model, Credit Risk models, etc. It's important to note that each 

pricing method has its assumptions, limitations, and applicability to different 

types of derivatives. However, all of them consume significant computational 

resources for financial institutions. Therefore, finding a quantum advantage 

for this application would be very valuable to the financial sector as a whole. 

II. QUANTUM COMPUTING FOR DERIVATIVES PRICING 

The use of quantum computing for derivative pricing has a relatively long 

history [4]-[8]. Nowadays, due to the progress in developing of real 

(physical) quantum computers, the research in the field of industrial 

applications has intensified. In the field of derivative pricing, the article [9] is 

considered to be one of the first influential works. It presents a way to price 

plain vanilla and Asian options in a Black–Scholes framework using quantum 

computing. On the other hand, focus the research in [10] is on the 

possibilities and performance of the currently available noisy intermediate-

scale quantum (NISQ, c.f. [11]) hardware to price multi-asset and path-

dependent options. Likewise, in a Black–Scholes framework, article [12] 

presents an algorithm which precomputes standard normal distributions into 

quantum states and uses affine transformations to obtain the asset’s path-

dependent return distributions. In addition to this new method, they also 

derive bounds on required resources for established quantum algorithms in 

order to reach a practical quantum advantage. Another approach, followed by 

[13], is to solve partial derivative equations for option prices by using the 

finite difference method. Pricing multi-dimensional derivatives with the help 

of discretizing their price partial differential equations is a method used as 

well in [14]. The novelty was that a variational quantum algorithm was used. 

Authors of [15] use a Heath–Jarrow–Morton framework for modeling 

forward rates and, in doing so, show how the model is adapted to the 

quantum computer. The application of a quantum gradient estimation 

algorithm to calculate financial indicators of sensitivity (Greeks) is illustrated 

by [16]. They present different approaches and investigate their complexity 

with respect to the requirements of quantum computers. Authors of [17] show 

an efficient way to prepare quantum states when employing amplitude 

estimation and present their findings on a Heston model for option pricing 
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using real hardware.  

Quantum computing utilizes the superposition property to achieve much 

higher computational efficiency than classical computers. For example, 

quantum supremacy was achieved in 2019. Article [18] reported that Google 

succeed in computing a problem in only 200 seconds using a quantum 

computer that would take 200 million years to solve with a classical 

supercomputer. In classical computers, the basic component of information is 

called a bit, which is expressed by 0 or 1 deterministically. On the other hand, 

quantum computers use two basis quantum states denoted as |0 and |1, 

analogously to a classical bit, to express their basis component of 

information, which is called a qubit and determined probabilistically. A 

single qubit state can be represented as a normalized two-dimensional 

complex vector, i.e., 

 |  =  |0 +  |1,  || ||2 + || ||2 = 1 (1) 

 

where α and β are complex numbers and || ||2 and || ||2 are the probabilities 

of observing |0 and |1 from the qubit, respectively.  

We use the vector representation convention introduced by Dirac [19] for 

Hilbert spaces, assumed and used extensively in quantum mechanics. In this 

case, a ket vector, represented as |a  , is a column vector of complex numbers, 

while a bra vector, represented as a | , is the conjugate transpose of |a  , that 

is a |  = |a †. The Hilbert space inner product is represented as (|a , |b ) = 

a |b . The outer product is, in turn, given by |a  b |. A projection operator 

corresponds to an operator of the form || aaPa = which acts on any ket |b as 

.||| = ababPa  

Equation (1) can be also geometrically represented using polar coordinates 

  and  ,   

 |  = cos( /2)|0 + ei  sin( /2)|1   (2) 

 

where 0     and 0    . This representation maps a single qubit state 

into the surface of 3-dimensional unit sphere, which is called Bloch sphere. A 

multi qubit system can be represented as the tensor product of n single qubits, 

which exists as a superposition of 2n basis states from |00…00 to |11…11. 

Quantum entanglement appears as a correlation between different qubits in 

this system. For example, in a 2-qubit system 2-1/2|00 + 2-1/2|11, the 

observation of the first qubit directly determines that of the second qubit. 

Those systems are controlled by quantum gates - unitary operators mapping a 

qubit system into another one. Every quantum gate can be factorized into the 
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combination of several basic operators, like rotation operator gates and 

Controlled Not (CX) gate. Rotation operator gates Rx() , Ry() , Rz()  rotates 

a qubit state in Bloch sphere around corresponding axis by   and CX gate 

entangles two qubits by flipping a qubit state if the other is |1. Those 

quantum gates utilizes quantum superposition and entanglement to take an 

advantage over classical computing, and it is well known that quantum 

algorithms can obtain an exponential computational gain over existing 

algorithms in certain tasks (e.g. prime factorization [20]). 

III. QUANTUM ARTIFICIAL NEURAL NETWORKS 

The connection between quantum computer science and artificial neural 

networks (ANNs) has been object of research since the 1990s, in particular, 

in what regards quantum associative memory, quantum parallel processing, 

extension of classical ANN schemes, as well as computational complexity 

and efficiency of quantum artificial neural networks (QANNs) over classical 

ANNs [21]-[25]. 

Mathematically, a classical ANN with a binary firing pattern can be 

defined as an artificial networked computing system comprised of a directed 

graph with the following additional structure [26], [27]: 

• A binary alphabet A2 = {0,1} associated to each neuron describing the 

neural activity, with 0 corresponding to a non-firing neural state and 1 to 

a firing neural state, so that the firing patterns of a neural network with N 

neurons are expressed by the set of all binary strings of length N: 

},...2,1,A:...{A 2112 Nkssss kN

N == ; 

• A real-valued weight associated with each neural link, expressing the 

strength and type of neural connection; 

• A transfer function which determines the state transition of the neuron 

and that depends upon: the state of its incident neurons, the weight 

associated with each incoming neural links and an activation threshold 

that can be specific for each neuron. 

A quantum version of ANNs, on the other hand, can be defined as a 

directed graph with a networked quantum computing structure, such that 

[25]: 

• To each neuron is associated a two-dimensional Hilbert space Н2 

spanned by the computational basis B2 = {|0,|1}, where |0 encodes a 

non-firing neural dynamics and |1 encodes a firing neural dynamics; 

• To a neural network, comprised of N neurons, is associated the tensor 
product of N copies of H2, so that the neural network’s Hilbert space is 
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the space
N

2H spanned by the basis  NN ss 22 A:|B =
 which encodes 

all the alternative firing patterns of the neurons; 

• The general neural configuration state of the neural network is 

characterized by a normalized ket vector
Nψ  2H| expanded in the 

neural firing patterns’ basis
N

2B : 

 

 


=
Ns

ssψψ

2A

|)(|  (3) 

with the normalization condition: 

 

 1|)(|

2A

2 =
 Ns

sψ  (4) 

 

The neural network has an associated neural links state transition operator 

U such that, given an input neural state | i n, the operator transforms the 

input state for the neural network in an output state |o u t, reflecting, in this 

operation, the neural links for the neural network, so that each neuron has an 

associated structure of unitary operators that is conditional on its input 

neurons: 

 = inout U  ||  (5) 

 

The output state of a QANN shows, in general, complex quantum 

correlations so that the quantum dynamics of a single neuron may depend in a 

complex way on the entire neural network’s configuration [25]. Considering 

the neurons n1, ..., nN for a N-neuron neural network, the U operator can be 

expressed as a product of each neuron’s neural links operator following the 

ordered sequence n1, ..., nN, where neuron n1 is the first to be updated and nN 

the last (that is, following the activation sequence):  

 U = UN … U2U1 (6) 

Note. For some QANNs it is possible to consider the action of the operators 

conjointly and to introduce, in one single neural links operator, a 

transformation of multiple neurons’ states, taking advantage of parallel 

quantum computation [25]. 

Each neuron’s neural links operator is a quantum generalization of an 

activation function, with the following structure for the k-th neuron: 
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 |''|)(|| sssUssU ink

sum

k =   (7)    

where sum reads as 
kNk ss − 2

1-

2 A',A and where sin is a substring, taken from 

the binary word ssʹ, that matches in ssʹ the activation pattern for the input 

neurons of nk, under the neural network’s architecture, in the same order and 

binary sequence as it appears in ssʹ. Uk(sin) is a neural links function that 

maps the input substring to a unitary operator on the two-dimensional Hilbert 

space H2. This means that, for different configurations of the neural network, 

the neural links operator for the k-th neuron Uk assigns a corresponding 

unitary operator that depends upon the activation pattern of the input neurons. 

The neural links operators incorporate the local structure of neural 

connections so that there is a unitary state transition for the neuron (a 

quantum computation) conditional upon the firing pattern of its input 

neurons. 

Suppose some quantum states | i n  and |o u t  satisfy (5), where U is an 
unknown unitary operator which is to be learned by the QANN using N 

training pairs ( )|,|  out

n

in

n  for n = 1, .., N. 

The architecture of the QANN is analogous to that of a classical deep 

neural network. The QANN is composed of an input layer, an output layer, 

and L hidden layers. The main issue is how to achieve a feedforward 

propagation of information in the QANN because the no-cloning theorem 

[28] states that the quantum state of a qubit cannot be copied to another qubit.  

The first property of such a QANN is that the density matrix [28] of output 

quantum state
out may be expressed as the composition of a sequence of 

completely positive layer-to-layer transition maps  l: 

 

 )),)))((((( 12  inLoutout  =  (8) 

where  

 













= 

==

−

−

−
l

l

m

j

l

j

l

mj

l

ll

jl

ll UQUQ
1

†1

1

1 |0000|(tr)(  ,  (9) 

Q l–1 is any operator on the (l – 1)th layer, ml is the number of neurons in layer 

l, and l

jU is the j-th unitary matrix acting on the layers (l – 1) and l. This 

characterization of the output of a QANN highlights a key structural 

characteristic: information propagates from input to output and hence 

naturally implements a quantum feedforward neural network. Furthermore, 
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(9) can be expressed using the Kraus (measurement) operator Aα [29] (we 

have omitted index l for the Kraus operators to make the notation clearer): 

 

 .AA)( †11  −− =


 lll QQ  (10) 

Similar to a classical deep network, we want to estimate U ("weights") 

from the training pairs using some cost function. Operationally, there is an 

essentially unique measure of closeness for (pure) quantum states, namely the 

fidelity, and it is for this reason that we define our cost function to be the 

fidelity between the QANN output and the desired output averaged over the 

training data: 

 ,||
1

1

= 
=

out

n

N

n

out

n

out

n
N

C   (11) 

which varies between 0 (worst) and 1 (best).  

Parameter updating is proposed in [30] according to:  

 

 UeU diK 
→  (12) 

 

where Kd represents the parameterized matrix chosen such that C increases 

the most rapidly, and where  is the learning step size. The change in C is 

given by: 

 ,)))()(((tr
1

1

1

1
=

+

=

−=

N

n

L

i

l

n

ll

n
N

C 


 (13) 

),))(((( 12  in

n

ll

n  =   ),|)(|(  out

n

out

n

outl

n  = +
FF

1l
and F is the 

adjoint channel of ε given by  

 

 .AA)( †11  −− =



ll QQl

F   (14)

  

It is derived in [30] that the elements of Kd are represented as follows: 

 

 ,tr
2

1

,

1


=

−

=

N

n

l

jrest

m
l

jd M
N

K
l

     (15) 

where 
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     

 (16) 

η is the learning rate and rest in (15) means that l

jM is traced out over all the 

qubits independent of unitary .lU  

To evaluate l

jdK , for a specific neuron, we only need the output state of the 

previous layer,
1−l

n (which is obtained by applying the layer-to-layer channels 

1, 2l-1 to the input state), and the state of the following layer σl obtained 

from applying the adjoint channels to the desired output state up to the 

current layer. An exceptional feature of this algorithm is that the parameter 

matrices may be calculated layer-by-layer without ever having to apply the 

unitary operator corresponding to the full quantum circuit on all the 

constituent qubits of the QANN in one go. In other words, we need only 

access two layers at any given time, which greatly reduces the memory 

requirements of the algorithm. Hence, the size of the matrices in our 

calculation only scales with the width of the network, enabling us to train 

very deep QANNs. 

IV. QANN FOR LEARNING OPTION PRICES AND COMPUTING GREEKS 

The following results are taken from [32] and slightly modified. Suppose V 

is the value of a financial derivative, x is an underlying asset that affects V, 

and K is a strike (the price at which the underlying asset can be either bought 

or sold once exercised). The estimation of not only V but also the differentials 

(Greeks), such as dV/dx and d 2V/dx2, is an important task for financial risk 

management. Differential machine learning (DML) proposed in [31] has 

received great attention in the financial industry because DML estimates 

these differentials efficiently using a twin network scheme. After using a 

conventional feedforward neural network for predicting V, DML applies 

backpropagation via automatic adjoint differentiation (AAD) to compute the 

differential of the output V with respect to the input x. Weights are updated to 

minimize a cost function consisting of a weighted summation of the 

prediction errors of V and the differentials. Another aspect of DML is that it 

can approximate the shape of V with respect to x via the differentials, which 

greatly improves the estimation accuracy of V.  

The following normalization function is used to convert market data to 

numbers between 0 and 1, and to fuse them into Bloch sphere 

representations: 
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 .
2))/(exp(1

1
),,(




−+
=

cba
cbaP      (17) 

 

Given x, V, and strike K, we consider the following input and output: 

 

,1|0||,1|0|| 2121 +=+= outoutoutininin   

 

where 

)),,,(sin()),,,(cos( 21  KxPKxP inin ==  

and 

)).,,(sin()),,,(cos( 21  KVPKVP outout ==  

 

and where β and γ are fixed parameters.  

Then density matrices
in and

out are given as 

 







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
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
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2
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2

1
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)(
outoutout

outoutout
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  

so, the QANN gives 

 

 ).|)0000|((tr †

,, UU outhid

in

hidin

out  =   (18)  

 

The right-hand side of (18) means that
in is tensorized with qubits |0 ...0 

in hidden layers, and the output layer, unitary operators U are applied to the 

tensorized quantum state, and finally the resulting quantum state is traced out 

over qubits in input layer and hidden layers. Furthermore, given (18), it holds 

that 

 ).|)0000|)/((( †

,, UdxdUtr
dx

d
outhid

in

hidin

out

 = 


  (19) 
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Equation (19) implies that given the QANN and ,/dxd in we can 

compute ./dxd out  Therefore, the QANN is highly effective for learning 

differentials. However, if the QANN is implemented on a quantum computer, 

the main issue is that dxd in/  and dxd out/ are not quantum states (the traces 

are zero [32]). The traces must be one, the eigenvalues must be positive real 

numbers and we therefore modify them as follows: 

 

),(
2

1

22
,

,

IMr
I

dx

d

dx

d
xin

in

in
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+++= 


 

where ,xinin kr = and 
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+++= 


 

 

where ,Voutout k
dx

dV
r =  I is the identity matrix and μin, μout are scaling 

parameters. Note that dxd min /, and dxd mout /, are quantum states since the 

traces are equal to one and the eigenvalues are positive real as long as 

 

.
2

1
0,

2

1
0  outin rr  

 

Then the following output from the QANN is also a quantum state: 
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We can define d 2 in,m/dx2 and d 2 in,m/dx2 similarly. Then, the cost function 

to be maximized is: 
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where fd(,) represents the fidelity for mixed states, and d and g control the 

relative influence of the differential fidelity on the cost function. The unitary 

layers are updated according to (12). The supplementary information of [30] 

gives the elements of Kd as follows: 

 

,trtrtr
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where corresponding matrices are calculated using (16). 

Finally, after denormalization, the predicted option price is given as: 
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where X is the (1,1) element of matrix  out. If we implement the QANN using 

a quantum computer, we can calculate cos(P(V, K, γ)) by computing an 

approximation of the probability of observing |0.  

Similarly, the predicted delta,  = dV/dx, is given as:  
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where Y is the (1,1) element of matrix d out,m/dx, Z is the (1,1) element of 

trin,hid(U(1/2I⊗ |0…0hid,out0…0|)U†), Vp is the option price predicted by the 

QANN, and 
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We can compute the predicted gamma  = d 2V/dx2 similarly. 

 

Note. Higher order differentials depend on the value of lower order 

differentials, so the accuracy of lower order differentials is especially 

important. On the other hand, an increase of d or f does not affect the 
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accuracy of delta or gamma, respectively, if the difference between the 

training price and predicted price is not small [32]. 

The term dxd mout /, can be expressed as: 
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where X and Z are Pauli matrices 
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This implies that the Bloch vector of dxd mout /, is: 

 

 ),,(2sin(0),,(2cos(  KVPrKVPr outout −  

 

and if we implement the QANN using a quantum computer, we can compute 

− rout sin((2P(V, K, γ)) and the predicted delta by measuring the expected 

value of the qubit in the output layer in the Z-basis. 

V. CONCLUSION 

Classical methods for financial derivatives pricing, such as Monte Carlo 

and partial differential equations, have certain limitations in terms of 

computational complexity and performance. Quantum methods and quantum 

machine learning using quantum artificial neural networks, offer potential 

speedups and improvements in performance. However, the term quantum 

supremacy may lead to the illusion that quantum algorithms are always better 

than classical algorithms performing the same function. Given the inherent 

limitations of quantum computing, quantum computing benefits can only be 

realized through well-thought-out algorithms under certain circumstances and 

assumptions. Therefore, in designing a quantum-based deep learning 

algorithm, it is necessary to justify it by articulating its advantages over the 

corresponding classical models. 

The example shown is a truly quantum analogue of classical neurons, 

which form quantum feedforward neural network capable of universal 
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quantum computation. Training of this network for option pricing utilizes the 

fidelity as a cost function. This method allows for fast optimization with 

reduced memory requirements. The number of qubits required scales with 

only the width, allowing to largely avoid the vanishing gradient problem in 

this particular application. However, it is unavoidable to deal with this 

problem when designing large-scale QANN. This is still an open problem for 

which a solution is not yet clear. 
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