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Contents — In this paper, we will work on a problem of social graph 

clustering. Problem of graph clustering is very well studied, but in almost all 

cases, disjunctive and total clustering is created. In a social graph, it is obvious 

that we can have people that belong to many groups, as is the case for the 

majority of people. But we can also have a person that does not belong to any 

group. We devise few algorithms that can be used to solve this problem. Also, 

currently, there is no good general metric for measuring quality of such 

clustering, so we created one that best suits the needs of specified task. 
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I. INTRODUCTION 

OCIAL networks, such as Facebook, Twitter, LinkedIn, etc, are becoming 

very popular in the last few years. There are quite a few networks with 

more than one million users, with Facebook currently leading with more than 

500 million users. There is a lot of hand created data in those networks, and 

there are a lot of ways one can use that data to extract interesting information. 

For some types of information, a point that they are hand created makes them 

extremely valuable. 

 In most social networks, each user defines a list of other users that he is 

connected to. These connections make a graph that we will call social graph. 

On Facebook, each user defines a list of people that are their friends, with a 

constraint that such connection has to be confirmed. Requiring confirmation 

makes Facebook's friendships graph very accurate. 

 Each person has friendships from many spheres of their life. For example 

typical user can have friends from high school, university, work... The 

question is, can we automatically detect these groups, from the data user had 
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already provided. Specifically, in this paper, for any given user we will use 

only the subgraph of the social graph induced by his friends, and try to 

extract all of these groups from it. In purely graph theoretic terminology, we 

will try to create clusters of a given graph that will best possibly satisfy some 

conditions that arise naturally. 

 Most of the available clustering algorithms create a full disjunctive 

clustering, which means each vertex will be in exactly one cluster. In reality, 

friends can be in multiple groups or in no group at all. So we need a 

clustering algorithm where some vertices can be in more than one cluster, and 

some in none. There is very little work on overlapping clustering so far. We 

will describe few approaches to this problem, few algorithms for solving it, 

make a comparison both on automatically generated as well as actual social 

graphs, and give directions for future work. 

II. TASK 

 Given a set of vertices  , and a set of undirected edges   between them, 

we want to find a set of clusters   *         +  where each    is a subset 

of    that will maximize quality function        ( )  
Without explicitly defining quality function, above statement does not 

mean much. The quality function is an essential part of a given task 

statement, since different quality functions will give different resulting 

clusters, and so could require different algorithms. There is not a generally 

accepted quality function for clustering; so many clustering papers give 

different functions that suit their specific task. None of these seem suitable 

enough for our particular task, so we will have to define our own quality 

function. We will start by describing quality function as intuitive quality of a 

clustering, and try to represent that intuitiveness as well as possible. 

Clustering that is intuitively good creates groups that represent actual groups 

of people in real life. Any clustering should satisfy that each cluster is 

internally dense, and externally sparse, and that clusters are not too similar. 

We are also not interested in very small clusters, but that is a somewhat 

arbitrary requirement. 

III. QUALITY FUNCTION 

 Let us try to derive a good quality function. First we will see what makes a 

single cluster a good one, and then we will extend it to cover a set of clusters. 

So we have a set of vertices   *         +, a set of edges      , 

and a set of clusters   *          +.  
 The first goal is to make cluster internally dense. One good measure of 

internal density of a cluster is the ratio of edges present in induced subgraph, 
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compared to a clique of the same size. We will introduce  , the internal 

density coefficient, that will be calculated by: 

 ( )  
 | ( , -)|

| |(| |   )
 

where  ( , -) is standard notation that means induced subgraph.  

 Next, we want to make a cluster externally sparse. First let us denote 

maximal number of inbound edges with: 

 ( )     
     

|* |    (   )   +| 

Now we can denote external sparsity with  , and calculate it as the 

maximal ratio of inbound edges for any outer vertex, or: 

 ( )  
 ( )

| |
    
     

(
|* |    (   )   +|

| |
) 

Note that both   and   are always in interval ,   -. 
 Next we need to put together formula for a set of clusters. We want to keep 

as many of good clusters as possible, but we do not want almost identical 

clusters, that differ only on a few vertices. Also we do not want some cluster 

to be a subset of another cluster, though this requirement is not necessarily 

needed. We define the similarity index as: 

               (  )  ∑(
|     |

|  |
)

 

   

 

The lower the                 is, the better it is, since a cluster is more 

different from the other clusters. 

 Also, we don't want   and   to be too close and we don't want clusters to 

be small, so we add artificial penalty based on the size of a cluster: 

           ( )  
 

| |
   

With this, the only possible cluster of size less than 4 is clique of size 3 that is 

a connected component of  , in other words has no edge to the rest of the 

graph. 

 Now let us put all this together: 

       ( )  ∑ ( )  (                 ( ))   ( )

   

            ( ) 
This formula assures that it is best to take as many good and different clusters 

as possible.  
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IV. CLUSTERING ALGORITHMS 

 We will present here two approaches to solving our problem. Both are 

recursive, with different recursive step, but same recursion pattern. 

 Recursive step in clustering should, for any given graph, say that either the 

graph as a whole makes one cluster, or it can be partitioned in a set of 

subparts, such that any cluster is contained in one of the subparts. So if the 

graph has the best clustering   *          +, then partition P 
*          + should satisfy (     )(     )(     ) and     . 
 Any recursive step can trivially be extended to (recursive) graph clustering 

algorithm, by simply recursively applying recursive step to all subparts 

returned by recursive step itself. That means that the problem becomes: 

finding a partition of a graph that will preserve all clusters of the initial graph, 

if such partition exists. This simplifies the problem, and both algorithms we 

will present here will define a recursive step, and then extend it to recursive 

graph clustering algorithm. 

A. MCST Splitter 

 Let us assume we have a function  (   )  that in some sense represents 

how much do nodes   and   need to be in the same cluster. The larger value 

means nodes   and   should be in the same cluster; and the smaller that value 

is means they should not be in the same cluster. Assuming that we have such 

a function, we will now create an algorithm for the recursive step, that 

partitions a given graph. First, we create complete weighted graph   , with 

edge (   ) having weight  (   ). Now, we want to find partition  , such 

that all pairs of vertices   and   that are not together in the same part of the 

partition, have minimal  (   )  One way to define it strictly, is to say that 

maximal  (   ) for all such pairs     is minimal possible, from all partitions 

 . We can now say that if in such partition, maximal  (   ) is larger than 

some threshold, then   is a cluster, otherwise we can partition it into      
 First, let us try to create a best partition  , in which no vertex is in more 

than one partition. Obviously, best partition will have exactly two parts, 

  *   +  because if we had more than two, joining two of them will not 

increase maximal  (   )  So maximal  (   ) becomes            (   ). 
We can calculate that easily, by creating maximal cost spanning tree in graph 

    and then removing minimal edge from that tree. Then we get two trees, 

that are not connected, and we take them as partition into   and    
 If we want general overlapping partitions, the problem becomes much 

harder. We can create an approximation, by removing 2 minimal edges from 

maximal cost spanning tree, thus getting three subtrees       and   . Without 

loss of generality, let us say that two removed edges were connecting    and 

  , and    and    respectively, and the edge between    and    had smaller 
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weight. Now we can create a partition   *   +  such that   
               Now, maximal  (   ) becomes              (   ), 

and we know that it must be at least as good as disjunctive partition since: 

   
            

 (   )     (    
         

 (   )     
         

 (   )) 

 

 Now let us see what we can use for function  . As we said, it is necessary 

that the larger the value gets, the chance that vertices should be in the same 

cluster increases. The easiest function that obviously satisfies that criteria is 

 (   )        (   )                 . It is obvious that if two vertices are 

connected, the chance of them being in the same cluster is larger than if they 

are not connected. More precise function can be: 

 (   )  |( |(   )    (   )   )| 
or in other words  (   ) is the number of mutual neighbors. Notice that the 

first definition represents the number of paths of length one between   and  , 

and the second definition represents the number of paths of length exactly 

two between   and  . We can obviously expand this, and for any positive  , 

create a function that represents number of paths of length exactly   between 

two vertices.  

B. Spectral clustering 

 Currently, most popular clustering algorithms are based on spectral graph 

theory. They mostly work in combination with k-means algorithm, and give 

disjunctive partitioning. We will try to create overlapping partitions using 

spectral graph theory. 

 For a given matrix  , vector   that satisfies       is called eigenvector, 

and   is called corresponding eigenvalue. Eigenvector represents a vector that 

preserves its direction when multiplied by matrix  . All values   for which 

eigenvector   exists (so all eigenvalues) represent all solutions to the 

equation    (    )   . For a symmetric matrix  , all eigenvectors are 

mutually orthogonal, there are exactly   of them, and all eigenvalues are real. 

For our purposes, we can sort all pairs (   ) by eigenvalue in descending 

order, and we will enumerate them by this ordering. So when we say first 

eigenvector, that will mean eigenvector that corresponds to the largest 

eigenvalue. If there are multiple eigenvalues that are equal, we can sort them 

in any order. 

 Since we are starting with a graph, we need to construct a matrix that will 

represent it. There are multiple ways of creating it, so that its eigenvectors 

suit clustering best. We will use two of these. Based on a graph, we can 

create an adjacency matrix  , where: 
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     {
                  (     )   

                  (     )   
 

And we can also create Laplacian matrix  , defined by: 

     {

                         

∑     
 

    
 

 For both matrices, we will calculate their eigenvalues and their respective 

eigenvectors. For adjacency matrix, for clustering, eigenvectors that 

correspond to largest eigenvalues, skipping first, are interesting (those at 

positions      ). For Laplacian, eigenvectors that correspond to smallest 

eigenvalues are used, again skipping first (those at positions          ). 

These eigenvectors are known to give good results when used in graph 

clustering. For Laplacian there are theoretical proofs of some properties that 

make clustering work so good. For adjacency matrix, on the other hand, there 

are no such proofs, but it empirically gives good results. The eigenvector that 

we are skipping is not interesting for this purpose, but can be interesting for 

others. For adjacency matrix, the largest eigenvalue is always equal to 1, and 

for Laplacian, the smallest eigenvalue is always equal to 0. Good overview of 

current results in graph clustering based on spectral theory can be found in 

[1]. Good broader overview of spectral graph theory can be found in [2]  
 Here, we will only use the first of these interesting eigenvectors (so     

for adjacency matrix, and     for Laplacian, for which corresponding 

eigenvalue is called algebraic connectivity), and try to cluster based on it. We 

will sort all vertices by its corresponding value in that eigenvector, and use 

that ordering. Let's enumerate vertices after ordering             
 Known approach for creating disjunctive partition of a given graph is to try 

to split all the vertices in two consecutive (in calculated ordering) lists of 

vertices. In other words, for a splitting at index    we will divide vertices in 

two parts   *          + and   *              +  We can measure 

the quality of partition in two disjunctive parts as a ratio of edges present that 

go from Q to R, in other words |*(   )|       +| | |⁄ | | ⁄  We can 

now simply calculate that ratio for all indexes  , and partition where the ratio 

is the lowest. If that lowest ratio is above some threshold, then we can say 

that current graph is a cluster, and does not need more partitioning. 

 But we want to split in not necessarily disjunctive partition. One way is to 

find two indices       that have lowest ratio. If we denote with    

{         }     {               }  and    {              }  

our partition will be   *           +  We can also add requirement that 

distance between    and    must be in some allowed interval, so that we don't 

split into two almost distinct partitions, and that we do not split in two 
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partitions that have almost all vertices in common. If the larger of these two 

ratios is higher than threshold, then we will still split in only disjunctive 

partitions.  

 Let us now see if we can create a better overlapping partitioning using 

spectral ordering. As noted in previous section, given method for calculating 

quality of partitions has serious deficiencies, and works properly only for 

disjunctive partitions. For overlapping partitioning our restrictions, on what 

possibilities are tested, improve quality of partitions. We need a better 

measure of quality of partitions. One aspect of ordering by eigenvector, that 

we have not mentioned so far, but will help us here, is that it separates one 

cluster at the time. This means that we could expect to have one of two 

partitions we want to create in the resulting cluster itself. And we know a 

good quality function for clusters. For one part we want it to be good cluster 

 , but what do we require for the rest  ? If we just divide our graph into two 

disjunctive parts,   and      , we would miss clusters that overlap both   

and      So, we want vertices that have many edges to be added to    In 

other words, we want   to have external sparsity as low as possible. Internal 

density is a plus, but not that important. Also we do not want too much 

overlap between   and    so that the recursion does not go too wide, and do a 

lot of repeated work. In total, we are looking for something just like         

function, so we are going to use it. The problem then becomes, finding 

partition that has largest possible          We will again trust in sorting by 

eigenvectors, and only check consecutive parts, partitioned by two indexes    

and   , and having same partitions as in previous overlapping algorithm. For 

each pair of indexes, we will check its         and take one with largest 

value. 

C. Improving 

 Now that we have a way to create clusters of a large graph, we should also 

look if those solutions are locally optimal, or if there is an easy way to 

improve them, by adding or removing few nodes, for example. This is 

especially important, since in our algorithms there are not a lot of places 

where quality function is directly used. Both given algorithms and defined 

quality function use "logical" meaning of good clustering, so they should not 

be too far off. But constraints like non-similarity of clusters intentionally are 

not in any of the algorithms, so that they find all possible different clusters, 

and then in improving step we can choose which combination gives best 

value. 

 We can first locally improve all clusters separately, and then pick best 

combination out of those. 

If we want to calculate quality of a single cluster, the formula becomes 
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       ( )   ( )   ( )             ( )  We can iteratively improve 

this value by adding or removing one element to the current cluster in each 

step. We can try all possibilities, so checking which cluster, out of 

*   |   +  *   |   + possible close clusters, has largest        , 

and do that iteratively. When all possible clusters have         smaller then 

current cluster, we have found local maximum. Since we are always strictly 

increasing current          we know that this process must end. We can also 

add a possibility of swapping two vertices, one to be removed from the 

cluster, and other one to be added. 

 When we have set of clusters, that we don't want to change internally, we 

can try to choose best possible combination of those clusters, that will have 

the largest possible           
 Since we don't expect large number of clusters, and most clusters should 

be good, this shouldn't be a hard problem, so we can approach it greedily. We 

can add, one by one, best cluster that hasn't already been selected, best in a 

sense that when added to current set, it will give largest possible          We 

add clusters until any new cluster will decrease the current value. 

V. APPLICATION 

Wowd is a social media tool that helps you organize your online social life 

and discover the best of Facebook and the entire Web. One of the most used 

features is social integration with Facebook, which allows users to stay 

organized and cut through the clutter of information Facebook has. And since 

clutter is getting worse each day, that is becoming more important. One of the 

Facebook features targeted at both reducing information overload, and 

resolving privacy issues, are Groups. They allow users to create separate 

groups, and then have all the conversations in it separated from other 

conversations. In that way, you both have ability to share information only 

with group of people that information is targeted for, and you can stay 

organized. One major problem with this feature is that users need to create 

those groups. Facebook was hoping that at least one person in each group 

will be willing to spend time and create a group, but it looks like Groups are 

not used much. Wowd has solved this problem by automatically creating 

those groups for you, calling them SmartFeeds. Anybody can go to 

wowd.com and check how is, best algorithm given here, performing on his 

own social graph. 

 

Vule&Uros
Vol. 3, 2011                                                                                                    S-8

Vule&Uros
eRAF Journal on Computing



 

VI. CONCLUSION 

We have worked on a problem for which there is some previous work, but 

not much. General graph clustering has been well studied, but those 

algorithms don't work well on our task. We have given few approaches to 

solving our problem, and given a novel way for comparing the qualities of 

different clusterings. Our way for calculating qualities of clusterings can be 

easily used in comparing results of any set of algorithms. Results show that 

best approach uses spectral clustering with best overlapping partition based 

on same quality formula, and it gives better results than previous work in this 

area. 
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ABSTRACT 

U ovom radu ćemo se baviti problem klasterovanja socijalnog grafa. Ovaj 

problem je veoma dobro istražen, ali u skoro svim slučajevima radi se o 

potpunoj podeli na disjunktne klastere. Očigledno je da u socijalnom grafu 

ljudi najčešće pripadaju u više grupa. Ali takođe imamo i ljude koji ne 

pripadaju nijednoj grupi. Opisaćemo nekoliko pristupa ovom problemu, i na 

koji način se problem može rešiti. Takođe, ne postoji nijedna dobra mera 

koliko je određeno klasterovanje dobro, na osnovu koje bi se mogli 

upoređivati algoritmi, tako da smo definisali meru koja najbolje odgovara. 
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