


Contents — In this paper, we will work on a problem of social graph

clustering. Problem of graph clustering is very well studied, but in almost all

cases, disjunctive and total clustering is created. In a social graph, it is obvious

that we can have people that belong to many groups, as is the case for the

majority of people. But we can also have a person that does not belong to any

group. We devise few algorithms that can be used to solve this problem. Also,

currently, there is no good general metric for measuring quality of such

clustering, so we created one that best suits the needs of specified task.

Keywords — clustering, eigenvectors, minimal cost spanning tree, quality,

spectral graph theory, social graph

I. INTRODUCTION

OCIAL networks, such as Facebook, Twitter, LinkedIn, etc, are becoming

very popular in the last few years. There are quite a few networks with

more than one million users, with Facebook currently leading with more than

500 million users. There is a lot of hand created data in those networks, and

there are a lot of ways one can use that data to extract interesting information.

For some types of information, a point that they are hand created makes them

extremely valuable.

 In most social networks, each user defines a list of other users that he is

connected to. These connections make a graph that we will call social graph.

On Facebook, each user defines a list of people that are their friends, with a

constraint that such connection has to be confirmed. Requiring confirmation

makes Facebook's friendships graph very accurate.

 Each person has friendships from many spheres of their life. For example

typical user can have friends from high school, university, work... The

question is, can we automatically detect these groups, from the data user had

Igor Kabiljo, Računarski Fakultet, Srbija (email: ikabiljo@gmail.com, phone: +381-11-2697-

991)

Social graph clustering

Igor Kabiljo

S

Vule&Uros
Vol. 3, 2011 S-1

already provided. Specifically, in this paper, for any given user we will use

only the subgraph of the social graph induced by his friends, and try to

extract all of these groups from it. In purely graph theoretic terminology, we

will try to create clusters of a given graph that will best possibly satisfy some

conditions that arise naturally.

 Most of the available clustering algorithms create a full disjunctive

clustering, which means each vertex will be in exactly one cluster. In reality,

friends can be in multiple groups or in no group at all. So we need a

clustering algorithm where some vertices can be in more than one cluster, and

some in none. There is very little work on overlapping clustering so far. We

will describe few approaches to this problem, few algorithms for solving it,

make a comparison both on automatically generated as well as actual social

graphs, and give directions for future work.

II. TASK

 Given a set of vertices , and a set of undirected edges between them,

we want to find a set of clusters * + where each is a subset

of that will maximize quality function ()
Without explicitly defining quality function, above statement does not

mean much. The quality function is an essential part of a given task

statement, since different quality functions will give different resulting

clusters, and so could require different algorithms. There is not a generally

accepted quality function for clustering; so many clustering papers give

different functions that suit their specific task. None of these seem suitable

enough for our particular task, so we will have to define our own quality

function. We will start by describing quality function as intuitive quality of a

clustering, and try to represent that intuitiveness as well as possible.

Clustering that is intuitively good creates groups that represent actual groups

of people in real life. Any clustering should satisfy that each cluster is

internally dense, and externally sparse, and that clusters are not too similar.

We are also not interested in very small clusters, but that is a somewhat

arbitrary requirement.

III. QUALITY FUNCTION

 Let us try to derive a good quality function. First we will see what makes a

single cluster a good one, and then we will extend it to cover a set of clusters.

So we have a set of vertices * +, a set of edges ,

and a set of clusters * +.
 The first goal is to make cluster internally dense. One good measure of

internal density of a cluster is the ratio of edges present in induced subgraph,

Vule&Uros
Vol. 3, 2011 S-2

Vule&Uros
eRAF Journal on Computing

compared to a clique of the same size. We will introduce , the internal

density coefficient, that will be calculated by:

 ()
 | (, -)|

| |(| |)

where (, -) is standard notation that means induced subgraph.

 Next, we want to make a cluster externally sparse. First let us denote

maximal number of inbound edges with:

 ()

|* | () +|

Now we can denote external sparsity with , and calculate it as the

maximal ratio of inbound edges for any outer vertex, or:

 ()
 ()

| |

(
|* | () +|

| |
)

Note that both and are always in interval , -.
 Next we need to put together formula for a set of clusters. We want to keep

as many of good clusters as possible, but we do not want almost identical

clusters, that differ only on a few vertices. Also we do not want some cluster

to be a subset of another cluster, though this requirement is not necessarily

needed. We define the similarity index as:

 () ∑(
| |

| |
)

The lower the is, the better it is, since a cluster is more

different from the other clusters.

 Also, we don't want and to be too close and we don't want clusters to

be small, so we add artificial penalty based on the size of a cluster:

 ()

| |

With this, the only possible cluster of size less than 4 is clique of size 3 that is

a connected component of , in other words has no edge to the rest of the

graph.

 Now let us put all this together:

 () ∑ () (()) ()

 ()
This formula assures that it is best to take as many good and different clusters

as possible.

Vule&Uros
Vol. 3, 2011 S-3

Vule&Uros
eRAF Journal on Computing

IV. CLUSTERING ALGORITHMS

 We will present here two approaches to solving our problem. Both are

recursive, with different recursive step, but same recursion pattern.

 Recursive step in clustering should, for any given graph, say that either the

graph as a whole makes one cluster, or it can be partitioned in a set of

subparts, such that any cluster is contained in one of the subparts. So if the

graph has the best clustering * +, then partition P
* + should satisfy ()()() and .
 Any recursive step can trivially be extended to (recursive) graph clustering

algorithm, by simply recursively applying recursive step to all subparts

returned by recursive step itself. That means that the problem becomes:

finding a partition of a graph that will preserve all clusters of the initial graph,

if such partition exists. This simplifies the problem, and both algorithms we

will present here will define a recursive step, and then extend it to recursive

graph clustering algorithm.

A. MCST Splitter

 Let us assume we have a function () that in some sense represents

how much do nodes and need to be in the same cluster. The larger value

means nodes and should be in the same cluster; and the smaller that value

is means they should not be in the same cluster. Assuming that we have such

a function, we will now create an algorithm for the recursive step, that

partitions a given graph. First, we create complete weighted graph , with

edge () having weight (). Now, we want to find partition , such

that all pairs of vertices and that are not together in the same part of the

partition, have minimal () One way to define it strictly, is to say that

maximal () for all such pairs is minimal possible, from all partitions

 . We can now say that if in such partition, maximal () is larger than

some threshold, then is a cluster, otherwise we can partition it into
 First, let us try to create a best partition , in which no vertex is in more

than one partition. Obviously, best partition will have exactly two parts,

 * + because if we had more than two, joining two of them will not

increase maximal () So maximal () becomes ().
We can calculate that easily, by creating maximal cost spanning tree in graph

 and then removing minimal edge from that tree. Then we get two trees,

that are not connected, and we take them as partition into and
 If we want general overlapping partitions, the problem becomes much

harder. We can create an approximation, by removing 2 minimal edges from

maximal cost spanning tree, thus getting three subtrees and . Without

loss of generality, let us say that two removed edges were connecting and

 , and and respectively, and the edge between and had smaller

Vule&Uros
Vol. 3, 2011 S-4

Vule&Uros
eRAF Journal on Computing

weight. Now we can create a partition * + such that
 Now, maximal () becomes (),

and we know that it must be at least as good as disjunctive partition since:

 () (

 ()

 ())

 Now let us see what we can use for function . As we said, it is necessary

that the larger the value gets, the chance that vertices should be in the same

cluster increases. The easiest function that obviously satisfies that criteria is

 () () . It is obvious that if two vertices are

connected, the chance of them being in the same cluster is larger than if they

are not connected. More precise function can be:

 () |(|() ())|
or in other words () is the number of mutual neighbors. Notice that the

first definition represents the number of paths of length one between and ,

and the second definition represents the number of paths of length exactly

two between and . We can obviously expand this, and for any positive ,

create a function that represents number of paths of length exactly between

two vertices.

B. Spectral clustering

 Currently, most popular clustering algorithms are based on spectral graph

theory. They mostly work in combination with k-means algorithm, and give

disjunctive partitioning. We will try to create overlapping partitions using

spectral graph theory.

 For a given matrix , vector that satisfies is called eigenvector,

and is called corresponding eigenvalue. Eigenvector represents a vector that

preserves its direction when multiplied by matrix . All values for which

eigenvector exists (so all eigenvalues) represent all solutions to the

equation () . For a symmetric matrix , all eigenvectors are

mutually orthogonal, there are exactly of them, and all eigenvalues are real.

For our purposes, we can sort all pairs () by eigenvalue in descending

order, and we will enumerate them by this ordering. So when we say first

eigenvector, that will mean eigenvector that corresponds to the largest

eigenvalue. If there are multiple eigenvalues that are equal, we can sort them

in any order.

 Since we are starting with a graph, we need to construct a matrix that will

represent it. There are multiple ways of creating it, so that its eigenvectors

suit clustering best. We will use two of these. Based on a graph, we can

create an adjacency matrix , where:

Vule&Uros
Vol. 3, 2011 S-5

Vule&Uros
eRAF Journal on Computing

 {
 ()

 ()

And we can also create Laplacian matrix , defined by:

 {

∑

 For both matrices, we will calculate their eigenvalues and their respective

eigenvectors. For adjacency matrix, for clustering, eigenvectors that

correspond to largest eigenvalues, skipping first, are interesting (those at

positions). For Laplacian, eigenvectors that correspond to smallest

eigenvalues are used, again skipping first (those at positions).

These eigenvectors are known to give good results when used in graph

clustering. For Laplacian there are theoretical proofs of some properties that

make clustering work so good. For adjacency matrix, on the other hand, there

are no such proofs, but it empirically gives good results. The eigenvector that

we are skipping is not interesting for this purpose, but can be interesting for

others. For adjacency matrix, the largest eigenvalue is always equal to 1, and

for Laplacian, the smallest eigenvalue is always equal to 0. Good overview of

current results in graph clustering based on spectral theory can be found in

[1]. Good broader overview of spectral graph theory can be found in [2]
 Here, we will only use the first of these interesting eigenvectors (so

for adjacency matrix, and for Laplacian, for which corresponding

eigenvalue is called algebraic connectivity), and try to cluster based on it. We

will sort all vertices by its corresponding value in that eigenvector, and use

that ordering. Let's enumerate vertices after ordering
 Known approach for creating disjunctive partition of a given graph is to try

to split all the vertices in two consecutive (in calculated ordering) lists of

vertices. In other words, for a splitting at index we will divide vertices in

two parts * + and * + We can measure

the quality of partition in two disjunctive parts as a ratio of edges present that

go from Q to R, in other words |*()| +| | |⁄ | | ⁄ We can

now simply calculate that ratio for all indexes , and partition where the ratio

is the lowest. If that lowest ratio is above some threshold, then we can say

that current graph is a cluster, and does not need more partitioning.

 But we want to split in not necessarily disjunctive partition. One way is to

find two indices that have lowest ratio. If we denote with

{ } { } and { }

our partition will be * + We can also add requirement that

distance between and must be in some allowed interval, so that we don't

split into two almost distinct partitions, and that we do not split in two

Vule&Uros
Vol. 3, 2011 S-6

Vule&Uros
eRAF Journal on Computing

partitions that have almost all vertices in common. If the larger of these two

ratios is higher than threshold, then we will still split in only disjunctive

partitions.

 Let us now see if we can create a better overlapping partitioning using

spectral ordering. As noted in previous section, given method for calculating

quality of partitions has serious deficiencies, and works properly only for

disjunctive partitions. For overlapping partitioning our restrictions, on what

possibilities are tested, improve quality of partitions. We need a better

measure of quality of partitions. One aspect of ordering by eigenvector, that

we have not mentioned so far, but will help us here, is that it separates one

cluster at the time. This means that we could expect to have one of two

partitions we want to create in the resulting cluster itself. And we know a

good quality function for clusters. For one part we want it to be good cluster

 , but what do we require for the rest ? If we just divide our graph into two

disjunctive parts, and , we would miss clusters that overlap both

and So, we want vertices that have many edges to be added to In

other words, we want to have external sparsity as low as possible. Internal

density is a plus, but not that important. Also we do not want too much

overlap between and so that the recursion does not go too wide, and do a

lot of repeated work. In total, we are looking for something just like

function, so we are going to use it. The problem then becomes, finding

partition that has largest possible We will again trust in sorting by

eigenvectors, and only check consecutive parts, partitioned by two indexes

and , and having same partitions as in previous overlapping algorithm. For

each pair of indexes, we will check its and take one with largest

value.

C. Improving

 Now that we have a way to create clusters of a large graph, we should also

look if those solutions are locally optimal, or if there is an easy way to

improve them, by adding or removing few nodes, for example. This is

especially important, since in our algorithms there are not a lot of places

where quality function is directly used. Both given algorithms and defined

quality function use "logical" meaning of good clustering, so they should not

be too far off. But constraints like non-similarity of clusters intentionally are

not in any of the algorithms, so that they find all possible different clusters,

and then in improving step we can choose which combination gives best

value.

 We can first locally improve all clusters separately, and then pick best

combination out of those.

If we want to calculate quality of a single cluster, the formula becomes

Vule&Uros
Vol. 3, 2011 S-7

Vule&Uros
eRAF Journal on Computing

 () () () () We can iteratively improve

this value by adding or removing one element to the current cluster in each

step. We can try all possibilities, so checking which cluster, out of

* | + * | + possible close clusters, has largest ,

and do that iteratively. When all possible clusters have smaller then

current cluster, we have found local maximum. Since we are always strictly

increasing current we know that this process must end. We can also

add a possibility of swapping two vertices, one to be removed from the

cluster, and other one to be added.

 When we have set of clusters, that we don't want to change internally, we

can try to choose best possible combination of those clusters, that will have

the largest possible
 Since we don't expect large number of clusters, and most clusters should

be good, this shouldn't be a hard problem, so we can approach it greedily. We

can add, one by one, best cluster that hasn't already been selected, best in a

sense that when added to current set, it will give largest possible We

add clusters until any new cluster will decrease the current value.

V. APPLICATION

Wowd is a social media tool that helps you organize your online social life

and discover the best of Facebook and the entire Web. One of the most used

features is social integration with Facebook, which allows users to stay

organized and cut through the clutter of information Facebook has. And since

clutter is getting worse each day, that is becoming more important. One of the

Facebook features targeted at both reducing information overload, and

resolving privacy issues, are Groups. They allow users to create separate

groups, and then have all the conversations in it separated from other

conversations. In that way, you both have ability to share information only

with group of people that information is targeted for, and you can stay

organized. One major problem with this feature is that users need to create

those groups. Facebook was hoping that at least one person in each group

will be willing to spend time and create a group, but it looks like Groups are

not used much. Wowd has solved this problem by automatically creating

those groups for you, calling them SmartFeeds. Anybody can go to

wowd.com and check how is, best algorithm given here, performing on his

own social graph.

Vule&Uros
Vol. 3, 2011 S-8

Vule&Uros
eRAF Journal on Computing

VI. CONCLUSION

We have worked on a problem for which there is some previous work, but

not much. General graph clustering has been well studied, but those

algorithms don't work well on our task. We have given few approaches to

solving our problem, and given a novel way for comparing the qualities of

different clusterings. Our way for calculating qualities of clusterings can be

easily used in comparing results of any set of algorithms. Results show that

best approach uses spectral clustering with best overlapping partition based

on same quality formula, and it gives better results than previous work in this

area.

VII. WORKS CITED

1 Luxburg UV. A tutorial on spectral clustering. Statistics and Computing.

2007;17(4).

2 Cvetković D, Rowlinson P, Simić S. An Introductoin to the Theory of

Graph Spectra. 2010.

3 Meglicki Z. The Householder-QR/QL Algorithm. [Internet]. Available

from: http://beige.ucs.indiana.edu/B673/node30.html.

4 Baumes J, Goldberg M, Krishnamoorthy M, Magdon-Ismail M, Preston N.

Finding Communities by Clustering a Graph into Overlapping Subgraphs.

2005.

5 Mishra N, Schreiber R, Stanton I, Tarjan R. Clustering Social Networks.

2007.

ABSTRACT

U ovom radu ćemo se baviti problem klasterovanja socijalnog grafa. Ovaj

problem je veoma dobro istražen, ali u skoro svim slučajevima radi se o

potpunoj podeli na disjunktne klastere. Očigledno je da u socijalnom grafu

ljudi najčešće pripadaju u više grupa. Ali takođe imamo i ljude koji ne

pripadaju nijednoj grupi. Opisaćemo nekoliko pristupa ovom problemu, i na

koji način se problem može rešiti. Takođe, ne postoji nijedna dobra mera

koliko je određeno klasterovanje dobro, na osnovu koje bi se mogli

upoređivati algoritmi, tako da smo definisali meru koja najbolje odgovara.

Klasterovanje socijalnog grafa

Igor Kabiljo

http://beige.ucs.indiana.edu/B673/node30.html
Vule&Uros
Vol. 3, 2011 S-9

Vule&Uros
eRAF Journal on Computing

