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
Contents — In this paper, we address the problem of identifying the hard-to-

determine fuzzy measures for multicriteria decision making problem with 
interacting criteria. We devise approach to the problem, based on M. Grabish's
fuzzy measure identification algorithm. Fuzzy measure identifying procedure,
based on needs of specified task, is described and example is shown. 

Keywords—Criteria interaction, Fuzzy measure identification, Multicriteria 
decision making.

I. INTRODUCTION

HE main appeal of using fuzzy measures in multicriteria decision making
is their ability to model relative importance of decision making criteria 

and their complex interactions. Main difficulty, concerning their practical use, 

is the necessity of defining 2 N coefficients for N criteria problem in order to 
define a fuzzy measure. For most applications, experts are intended to assess
coefficients, but this is still very limiting, since for the large number of 
criteria, the task of assessing coefficients becomes too big and difficult for 
any kind of practical use. One approach to the problem is described in this 
paper, as well as the application on the considered ARDS (Acute Respiratory 
Distress Syndrome) classification problem. ARDS classification problem is a 
multicriteria decision making problem where doctor is asked to classify 
patient in an intensive care unit as being in phase N, I, II, III or IV (most 
severe phase) of a respiratory failure, based on 5 given symptoms.

II. MULTICRITERIA FUZZY DECISION MAKING

The known general model of a multicriteria decision making system is 
shown in Fig. 1.
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Fig. 1. Fuzzy multicriteria decision-making system. 

In Fig. 1: xi , i = 1,2, ... , N, are vectors of object properties, which are 
considered in decision making process; Cj, j = 1,2, ... , m, are decision making 
criteria; ij(xi), i = 1,2, ..., N, j = 1,2, ... ,m, are scores, i.e. degrees in which an 
object xi (or its property) satisfies the criteria Cj. Di,  i = 1, 2, ... , N, are 
decisions (performance indices) of an object xi with respect to all the criteria  
Cj. Decisions Di are obtained by aggregation of information ij(xi), using 
suitable aggregation operation. The decision D*, on object xi that best 
satisfies all criteria Cj, j = 1, 2, ... , m, is obtained by aggregation of decisions 
Di, - using suitable aggregation operation, appropriate for the considered 
problem. In fuzzy multicriteria decision-making systems, a score has the 

following property: ij(xi)  = ij (xi)  [0,1] and is treated as a fuzzy 

measure. Thus, the aggregation process of fuzzy information is an important 
element of fuzzy decision making system.

Some of the most commonly used aggregation operators are: family of 
quasi-arithmetic means operators (such as simple arithmetic mean, geometric, 
harmonic means, etc.), median (taking into account not the values themselves 
but only their ordering), weighted minimum, weighted maximum, ordered 
weighted averaging operators (OWA). All these operators are idempotent, 
continuous, and monotonically non decreasing (ranging between min and 
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max). Their main common characteristic is that they all are averaging 
operators. Reader interested in more details, analysis, comparisons and
classifications of family of operators can consult references [1], [2], [3].

All these operators have some drawbacks: Some do not possess all the 
desirable properties (e.g. quasi-arithmetic means are not stable under positive 
linear transformation), and some seem to be too restrictive (arithmetic sums, 
OWA, etc.). The main point here is that no one is able to model interaction 
between criteria in some understandable way.

Sugeno proposed the concept of non-additive fuzzy measure and fuzzy 
integral in 1974, [4]. For interacting criteria decision making, the Choquet 
integral represents a suitable aggregation operator.

III. FUZZY MEASURE AND THE CHOQUET INTEGRAL

A fuzzy measure (or the Choquet capacity) on C = {C1, ..., Cm} is a 
monotonic set function : P(C)  [0,1], where  P(C) is the power set of the 

set C, with ()=0 and (C)=1. Monotonicity means that (S)  (T), 

whenever S  T  C. An interpretation of  (S) can be that it is the weight 

related to the subset S of criteria. 
Given  , the Choquet integral of x  (R+)n with respect to  is defined by

Ch (x):= .)})(),...,({()(
1

)1()(



n

i
ii nixx                             (1)

In (1) () means a permutation of the elements of C such that x(1)  ...  x(N) 

and x(0) = 0.
A more exhaustive study of the Choquet integral properties can be found in 

[5], but will not be further discussed here.

IV. THE CHOQUET INTEGRAL FOR INTERACTING CRITERIA MODELING

As an illustrative example for interacting criteria decision making, the 
student ranking problem is commonly used [5]: Students are evaluated
according to their level in 3 subjects: mathematics, physics and literature. 
More importance is attributed to mathematics and physics, and the two are 
considered equally important. Coefficients of importance are chosen 
accordingly: 3 for math, 3 for physics, and 2 for literature.

Computing the average evaluation of the students by using a simple 
weighted mean, and with marks given on scale from 0 to 20, 3 students are 



eRAF Journal on Computing

Vol. 5, 2013                                                                                                S-4

evaluated in Table 1.

TABLE 1: WEIGHTED MEAN STUDENT EVALUATION.

Student Mathematics Physics Literature Global evaluation
(weighted mean)

A 18 16 10 15.25
B 10 12 18 12.75
C 14 15 15 14.62

The shown weighted mean student ranking is not satisfactory if the school 
ranking them wants to favor students without weak points. In the shown 
ranking, student A has severe weakness in literature, but is still ranked higher 
than student C, which has no weak points. This is due to too much importance 
being given to mathematics and physics, which are in a sense redundant, since 
usually, students good at mathematics are also good at physics (and vice 
versa). This kind of evaluation tends to overestimate (resp. underestimate) 
students good (resp. bad) at mathematics and/or physics. Through use of the 
Choquet integral, a more complex decision making process reflecting criteria 
interaction can be modeled.

For the student ranking example, suppose the decision makers preferences 
are:
1. Scientific subjects (math, physics) are more important.
2. Scientific subjects are more or less similar, and students good at 
mathematics (resp. physics) are in general also good at physics (resp. math), 
so that students good at both must not be too favored.
3. Students good at mathematics (or physics) and literature are rather 
uncommon and must be favored.

These can be directly translated in term of fuzzy measure as:
1.  ({mathematics}) = ({physics}) = 0.45, 

({literature)} = 0.3 

(relative importance of scientific versus literary subjects)

2. ({mathematics, physics}) = 0.5 < ({mathematics}) + ({physics}) 

(redundancy between mathematics and physics)

3. ({mathematics, literature}) = ({physics, literature}) = 0.9 > 0.45 + 
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0.3 (support between literature and scientific subjects)

The idea is that superadditivity of the fuzzy measure implies synergy 
between criteria, and subadditivity implies redundancy. Note that it is up to 
expert to scale these values to the extent that he feels expresses the 
importance and interaction.

Applying the Choquet integral with the above fuzzy measure leads to the 
following new global evaluation shown in Table 2:

TABLE 2: THE CHOQUET INTEGRAL STUDENT EVALUATION.

Student Mathematics Physics Literature Global evaluation
(the Choquet integral)

A 18 16 10 13.9
B 10 12 18 13.6
C 14 15 15 14.9

Here, students are properly ranked in accordance to the preference relation.

V. FUZZY MEASURE IDENTIFICATION PROBLEM

The use of fuzzy measures is increasingly difficult with the increase of the 
number of criteria, since for the N criteria decision problem, one has to 

identify 2 N coefficients in order to define a fuzzy measure. Often, presence 
of an expert is assumed for the assessment of coefficients. Even so, the 
assessment step is still considered difficult. Especially tricky part is 
assessment of interaction of three and more criteria taken together. In [6], 

where an expert is asked to input the 2 5 coefficients for determining the 
severity of respiratory distress, this task alone makes the model an impractical 
one, even for experts. In [6], developed Java application is described, and 
here we will not go into details, but will use it to illustrate the difficulty of 
identifying interactions amongst criteria.

On Fig. 2, the required coefficients for 5 criteria (symptoms of illness) are 
shown. The developed application relaxes the difficulty of the task on expert
by computing the default coefficients for the non-interacting criteria, so the 
expert using the application is prompted to alter them according to their 
synergy or redundancy. What makes the task additionally difficult is the fact 
that the coefficients of the fuzzy measure must obey monotonicity constraints. 
Application aids the user by warning him when monotonicity is lost, and 
points out the conflicted coefficients. This is still a tedious task, and if the 
number of classifying criteria used in application was to grow, rather than 
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improving the model, this could lead to an unusable application instead – that 
is, the task of scaling alone would be too much to grasp.

Fig. 2. Coefficients for 5 criteria.

To address the problem, a suitable algorithm could be used to assess the 
coefficients not altered by the expert using the application, while the 
coefficients altered by the expert would remain untouched by the algorithm.
The next section describes M. Grabish's algorithm proposed in [7] for online 
fuzzy measure learning based on given learning datum. Despite the fact that 
in this paper we are not treating ARDS classification problem as an online 
learning problem, we propose to utilize one key aspect of M. Grabish's
algorithm which differentiates this algorithm from several other algorithms 
devised for the same purpose (fuzzy measure identification), for instance, one
proposed by Mori and Murofushi in [8].

VI. ALGORITHM FOR IDENTIFYING FUZZY MEASURES

Algorithm proposed in [7] arranges the coefficients for which the learning 
data are lacking to get the coefficients as homogeneous as possible, meaning 
distance from neighbor nodes should be as equal as possible. It consists of 2 
basic steps best explained using lattice representation of the coefficients 
shown in Fig. 3.

For the description of the algorithm, the following terminology is used:

The lattice of a fuzzy measure is made from nodes related by links. The 
lattice has n + 1 horizontal layers, numbered from 0 (for the layer containing 

only Ø ) to n (for the layer containing only X ). A path is a set of chained 

links, starting from the node Ø and arriving to the node X . For a given 

node in layer l, its lower neighbors (resp. upper neighbors) are the set of 
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nodes in the layer l-1 (resp. l + 1) linked to it. There are l lower neighbors and 
n – l upper neighbors. 

Fig. 3. Lattice of the coefficients of a fuzzy measure (n=4) with one path 
highlighted

The author of the algorithm describes it in 2 steps as follows:

step 0: The fuzzy measure is initialized at the equilibrium state (all criteria of 
equal importance, no interaction).

step 1: For a given learning datum x, we modify only the coefficients on the 
path involved by x in order to decrease the error, as in a gradient descent 
algorithm. The modification is done in order to preserve the monotonicity 
property on the path. Also, monotonicity is checked for neighboring nodes, 
but only for the nodes already modified in previous steps. This is done for all 
learning data, several times.

step 2: If there are too few learning data, then some nodes may have been left 
unmodified. These nodes are modified here in order to have the most 
equilibrated lattice, i.e. distance from neighbors should be as equal as 
possible. Multiple iterations of this step are also reasonable. 

The algorithm is used for pattern recognition and classification based on 
fuzzy integral in [7], [9], and the crucial point is the identification of the fuzzy
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measures using training data. In [7], adaptation of the above described 
algorithm is named Heuristic Least Mean Squares (HLMS). Principle is the 
same, and the alteration is in coefficient adaptation: for the targeted class of 
the training datum, coefficients are increased, and for all other decreased. 
HLMS algorithm is tested in [7] in terms of speed and convergence on test 
data: cancer data (284 training examples with 9 attributes for 2 classes) and 
simulated data (200 training examples with 5 attributes for 2 classes). The 
algorithm is compared to constrained least mean squares algorithm (CLMS), 
and has superior classification rate (77.4% for cancer data) in comparison to 
CLMS (72.9% for cancer data). Also, the CPU time for tested cancer data is
significantly smaller for the proposed Heuristic least mean squares algorithm, 
and there is a slight loss in optimality.

ARDS classification based entirely on HLMS with no expert present, but 
relying on training data alone, is also feasible. Approach described in this 
paper is a step in that direction, providing experts an aid for complex 
multicriteria ARDS classification thru utilization of specific lattice structure 
of fuzzy coefficients.

For a more detailed description and analysis of HLMS algorithm, reader is 
referred to [7].

VII. ARDS CLASSIFICATION PROBLEM

Membership degrees for each phase of acute respiratory distress syndrome, 
for the given numerical values of symptoms, indicated by Table 3, are 
determined by using trapezoidal membership function, [10] and [11], and 
given by Table 4. In Table 3, in column “Phase”, N is normal condition of a 
patient, I – is first (least severe) phase of respiratory distress (injury and 
resuscitation), II – the second phase of respiratory distress (subclinical), III –
the third phase (established respiratory distress), and IV – the fourth phase of 
distress (severe respiratory failure). The features Breathing and Rö are 
expressed verbally, and given subjective membership degree (fuzzy sets 
theory). Other features are characterized by approximate intervals of 
numerical values. For these features to be interpreted as fuzzy sets ‘x is 
approximately in the interval [b, c]’, they must be characterized by an order 
quadruple A = (a, b, c, d), fuzzy trapezoidal number, [10]. Characteristic 
values of the criteria for determining the severity of respiratory distress, given 
by Table 3, are represented by fuzzy intervals formed on basis of experience, 
and given by Table 4.
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TABLE 3: DECISION-MAKING PARAMETERS.
Phase Breathing Rö PaO2 PaCO2 A-aDO2

N - - 80 – 100 35 – 45 5 – 10
I normal no changes 70 – 90 30 – 40 20 – 40
II mild to 

moderate 
tachypnea

minimal 
infiltrates

60 – 80 25 – 35 30 – 50

III increasing
tachypnea

confluence 
of infiltrates

50 – 60 20 – 35 40 – 60

IV
obvious 

respiratory 
failure

generalized 
infiltrates 35 – 55 40 – 55 50 – 80

TABLE 4: FUZZY DECISION PARAMETERS.
Phase PaO2 PaCO2 A-aDO2

N (70,80,100,110) (30,35,45,50) (0,5,10,15)
I (50,70,90,110) (25,30,40,45) (10,20,40,50)
II (40,60,80,100) (20,25,35,40) (20,30,50,60)
III (40,50,60,70) (10,20,35,45) (30,40,60,70)
IV (30,35,55,60) (30,40,55,65) (40,50,80,90)

For a patient with symptoms described in Table 5, the decision making 
table is given (Table 6).

TABLE 5: SYMPTOMS OF A PATIENT TO BE DIAGNOSED.
Breathing Rö PaO2 PaCO2 A-aDO2
moderate
tachypnea

confluence of 
infiltrates

50 32 31

TABLE 6: DECISION-MAKING TABLE FOR A PATIENT.
Phase Breathing Ro PaO2 PaCO2 A-aDO2

N 0 0 0 0.4 0
I 0 0 0 1 1
II 0.9 0 0.5 1 1
III 0.3 0.8 1 1 0.1

Suppose physician’s preferences for the given symptoms are: “Features 
Breathing and Rö are less important than other and between features PaO2

and PaCO2 there exists synergy”. Expressed by a fuzzy measure these 
preferences could be:
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For the first preference:

(Breathing)= (Rö)=0.1 

(PaO2)= (PaCO2)= (A-aDO2)=0.2.

For the second preference:

(PaO2,PaCO2)=0.5> (PaO2) +(PaCO2)=0.4.

To obtain evaluation for each phase of the illness using the Choquet 
integral, the following indexes of importance need to be defined: 
(PaCO2, A-aDO2), (Breathing, PaCO2, A-aDO2), (Breathing, PaO2,

PaCO2, A-aDO2), (Rö, PaO2, PaCO2), (Breathing, Rö, PaO2, PaCO2).  

For the given example, with a slight synergy between criteria PaO2 and 
PaCO2, and no other interactions, the decision makers reasoning for assessing 
other indexes where the two interacting criteria appear together could be to 
simply propagate the synergy (wherever the two interacting symptoms appear
together, increase the index of importance, so for instance (Breathing,

PaO2, PaCO2, A-aDO2) would be 0.8). This approach, let’s call it propagated
interaction approach, would only be applicable in cases like this, where 
monotonicity is not lost by this kind of reasoning. If the synergy between 2 
symptoms was greater, for instance (PaO2, PaCO2)=0.8, we would have 

lost monotonicity, and (Breathing ,PaO2, PaCO2, A-aDO2) would be 1.1, 

which is greater than 1 (index of importance of all indexes taken together), so 
the decision maker would resort to scaling the conflicted values. This does 
not seem practical, especially for large number of criteria. Different approach
comes from reasoning used in HLMS algorithm – for the lacking information, 
try to get indexes as homogenous as possible. Essentially, we use the second 
step of the algorithm for the hard-to-assess indexes, while indexes of 
importance identified by the expert decision maker are treated as learned in 
step 1. Value of the considered index (starting from lower levels in lattice 
representation) is adjusted considering the values of its upper and lower 
neighbors. This is done by computing the following quantities for the 
considered node )(i :

1/mean value of upper neighbors denoted by )(imup

2/mean value of lower neighbors denoted by )(imlow

3/minimum distance between considered index and its upper (resp. lower) 

neighbors, denoted )(idup , (resp. )(idlow ).
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If )(imup + )(imlow – 2 )(i > 0, then )(i is increased:

)(inew = )(iold + 
))()((2

)())(2-)()((

imim

idiimim

lowup

uplowup



 
            (2)

otherwise )(i is decreased:

)(inew = )(iold + 
))()((2

)())(2-)()((

imim

idiimim

lowup

lowlowup



 
                 (3)

 is a constant value in [0, 1]. Several iterations can be done.

For the described patient and the preferences and using the 2 described 
approaches, the resulting evaluations of the phases of illness are given in 
Table 7. The results are obtained using the Choquet integral as described in 
part III, and for HLMS reasoning approach the required index values are 
obtained after 300 iterations of the described index updating procedure using 
Java code.

TABLE 7: PHASE EVALUATION TABLE FOR THE PATIENT.
Phase Propagated 

interaction
approach

HLMS reasoning 
approach

(300 iterations, β=1)
N 0.08 0.08
I 0.4 0.4
II 0.64 0.6251
III 0.64 0.6285

Patients phase is determined based on maximum value of the Choquet 
integral:

},,,max{_ IIIIIIN ChChChChphasePatient                 (4)

In Table 7, phases II and III are determined as equal by the first approach, 
and the second approach gives a slightly higher score to phase III. As 
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expected, evaluations on phases are similar for the represented example, 
where the propagated synergy approach was possible, but the second 
approach is far superior in terms of demands on expert evaluating the patient
and in terms of applicability for any given situation. For the phases N and I, 
the results are identical as expected, since for the described patient, the 
Choquet integral for those phases does not entail any of the coefficients 
affected by synergy of two symptoms - PaO2 and PaCO2.

VIII. CONCLUSION

Fuzzy sets theory has been well studied. Even so, fuzzy measure 
identification is still a challenging problem. We have shown one approach to 
solving our problem and shown the results. Further improvements in fuzzy 
measures identification could come from similar algorithms, taking into 
account the unique structure of fuzzy measure coefficients and incorporating 
it into logic of the algorithm. For the presented ARDS classification problem, 
if machine learning was to take place without the expert evaluation, but based 
on training data alone, HLMS algorithm could be applied, but even better 
results could be expected from a more complex fuzzy measure identification 
than one accomplished by the HLMS algorithm. This is due to the fact that 
the medical expert determines the interaction of symptoms based on their 
values for the given patient, and standard online learning of indexes based on 
training set would not suffice, but the relation of the values of symptoms 
would also have to be taken into account.  
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ABSTRACT

Rad se bavi problemom identifikacije rasplinutih mera u 
višekriterijumskom odlučivanju sa kriterijumima u interakciji. Predstavljen je 
pristup problemu, zasnovan na algoritmu za identifikovanje rasplinutih mera 
autora M. Grabiša. Opisana je procedura identifikovanja rasplinutih mera
zasnovana na potrebama prezentovanog zadatka i prikazan je primer.

IDENTIFIKACIJA RASPLINUTIH MERA ZA 
VIŠEKRITERIJUMSKO ODLUČIVANJE

Milica Savić


