

Vol. 7, 2015. S-64

Abstract — Prevalent problem in robotic development was that engineers

lacked common platform for communication and collaboration. Every time they

started a new project they needed to build software and hardware from the

beginning. To overcome this problem various robotic platforms were developed

and today’s leading platform for robotics is Robot Operating System (ROS).

ROS is intending to be worldwide useful robotic operation system as well as for

industrial applications and scientific research. The paper presents a main

concept of the ROS, advantages and comparison of ROS and other frameworks

used in robotics. PC implementation and using PC platform as a robotic

controller is the main goal of the paper.

Key words — operation system, PC platform, robot, ROS.

I. INTRODUCTION

HE Robot Operating System (ROS) is a meta-operating system,

something between an operating system and middleware. It is a

collection of software frameworks for robot software development, providing

operating system-like functionality.

ROS is developed using the permissive BSD open-source license, and

gradually has become a widely-used platform in the robotics research

community.

Stefan Dragićević, The Faculty of Computer Science, Union University in Belgrade, Trg

Republike 2, 11000 Beograd, Serbia, (e-mail: s.v.dragicevic@gmail.com)

Miloš D Jovanović, Institute Mihajlo Pupin, University in Belgrade, Volgina 15, 11000

Beograd, Serbia, (e-mail: milos.jovanovic@pupin.rs)

Paper was also published in proceedings at 2nd International Conference on Electrical, Electronic

and Computing Engineering IcETRAN 2015, Silver Lake, Serbia, June 8 – 11, 2015

Robot Operating System and its

implementation on PC architecture

Stefan Dragićević, Miloš D Jovanović

T

eRAF Journal on Computing

Vol. 7, 2015. S-65

It provides standard operating system services such as hardware

abstraction, contention management and process management, as well as

high-level functionalities such as asynchronous and synchronous calls,

centralized database, a robot configuration system and other functionalities.

In past engineers would spend significant amount of time designing

robot’s hardware and software within. Each time they had to redesign and

reprogram new robots.

The main idea of ROS is to avoid reinventing the wheel over and over

again, and it tries to simplify the task of designing and programing complex

and reliable robot behavior across various robotic platforms. This is not an

easy task to accomplish because there is a large number of variations of

robotic systems.

ROS is built with collaboration in mind because it is hard for a single

institution to do all the work. It allows different institutions to work together

and to build upon each other’s progress.

There are five main principles in ROS [1]:

 Peer-to-Peer

 Tools-based (microkernel)

 Multi-language

 Thin

 Free and open source

Peer to Peer: Complex robot systems consists of several onboard

computers or boards that are connected via Ethernet, and sometimes

offboard computers for complex computation tasks. Peer to peer architecture

together with buffer and lookup systems enables every component to

communicate directly with any other, synchronously or asynchronously as

required.

Multi-language: ROS is language-neutral, and can be programmed in

various languages. The ROS specification works at the messaging layer.

Peer-to-peer connections are negotiated in XML-RPC, which exists in

various languages. To support a new language, either C++ classes are re-

wrapped or classes are written enabling messages to be generated. These

messages are described in IDL (Interface Definition Language).

Tools-based: ROS has microkernel which uses a large amount of small

tools to build and run various ROS components. Each command used to

manipulate nodes and messages in ROS is an executable. This is advantage

because problem with one executable will not affect others which makes

eRAF Journal on Computing

Vol. 7, 2015. S-66

ROS more reliable and flexible than systems with centralized runtime

environment.

Thin: ROS drivers and algorithms are intended to be stored in standalone

executables to combat development of algorithms that are dependent on

robotics OS and therefore hard to reuse. This ensures maximum reusability

and most importantly keeps ROS’s size down. This makes ROS easy to use

and it facilitates unit testing. The complexity is moved to libraries.

ROS also uses code from other open source projects.

II. HISTORY

ROS was originally developed in the Stanford Artificial Intelligence

Laboratory as support for the Stanford AI Robot STAIR project [2].

Since then it was backed up by large amount of researchers by

contributing their time and knowledge to core ROS ideas and its elemental

packages.

Since 2007 it was mainly developed and maintained by a Californian

company, Willow Garage. In 2013 it was transferred to the Open Source

Robotics Foundation.

From the beginning, ROS’s development was distributed among multiple

institutions and for multiple robots. This is one of ROS’s strengths since any

group can start their own ROS repository on their servers and maintain full

control and ownership.

At starts most of ROS users were researchers, but now the ROS

community consists of thousands of users around the world, mainly in

commercial sector, industrial automation and service robotics, with projects

ranging from small home projects to large industrial automation systems.

The community is very active. According to metrics that can be found on

www.ros.org it has more than 1,700 members on the ros-users mailing list,

more than 4,000 users on the collaborative documentation wiki and around

8,500 users on community driven Q&A website. The wiki has around

14,500 pages which have 30 edits and 31,500 visits per day. The Q&A

website has more than 18,000 questions with 70% answer rate. [3]

III. STRUCTURE

ROS was designed to be as distributed and modular as possible, so that

users can use as much or as little of ROS as they desire.

eRAF Journal on Computing

Vol. 7, 2015. S-67

There is large number of user-created packages that add a lot of

functionality on top of the core ROS system. They range from proof-of-

concept algorithm implementations to industrial-quality drivers and

capabilities.

At the lowest level, ROS offers a message passing interface that provides

inter-process communication and is commonly referred to as a middleware.

ROS provides:

• publish/subscribe anonymous message passing

• recording and playback of messages

• request/response remote procedure calls

• distributed parameter system

A communication system is often one of the first needs to arise when

implementing a new robot application. ROS's messaging system manages

the details of communication between distributed nodes via the anonymous

publish/subscribe mechanism.

Another benefit of using a message passing system is that it forces

implementation of clear interfaces between the nodes in system, thereby

improving encapsulation and promoting code reuse. The structure of these

message interfaces is defined in the message IDL (Interface Description

Language).

ROS is language-independent. At this point there are three main libraries

in ROS that allow programing in C++, Python and LISP which are geared

toward UNIX-like systems. Beside those three libraries there are two

experimental libraries making it possible to program ROS in Java or Lua.

A. Ros file system

The resources of ROS are organized into a hierarchical structure on disc.

Two important concepts stand out [4]:

The package: the fundamental unit within ROS software organization. A

package is a directory containing nodes, external libraries, data,

configuration files and one xml configuration file called package.xml.

The stack: a collection of packages. It offers a set of functionalities such

as navigation, positioning, etc. A stack is a directory containing package

directories plus a configuration file called stack.xml.

Message (msg) types - message descriptions that define data structures for

messages sent in ROS.

eRAF Journal on Computing

Vol. 7, 2015. S-68

Service (srv) types - service descriptions that define request and response

data structures for services in ROS.

B. Ros computation graph

The basic Computation Graph concepts of ROS are nodes, Master,

Parameter Server, messages, services, topics, and bags, all of which provide

data to the Graph in different ways. Simple interaction between nodes, topics

and services is presented in Pic. 1 [5].

Pic. 1. ROS Basic concepts

Nodes: In ROS, a node is an instance of an executable. A node may

equate to a sensor, motor, processing or monitoring algorithm, and other.

Every node that starts running declares itself to the Master. This comes back

to the microkernel architecture, whereby each resource is an independent

node.

Master: The Master is a node declaration and registration service, which

makes it possible for nodes to find each other and exchange data. The

Master is implemented via XMLRPC. The Master includes a heavily-used

component called the Parameter Server, also implemented in the form of

XMLRPC, and which is, as the name implies, a kind of centralized database

within which nodes can store data and, in doing so, share system-wide

parameters.

Data is exchanged asynchronously by means of a topic and synchronously

via a service.

Topics: A topic is an asynchronous communication method used for

many-to-many communication, data transport system that is based on a

subscribe/publish system. One or more nodes are able to publish data to a

topic, and one or more nodes can read data on that topic. A topic is, in a

way, an asynchronous message bus, a little like an RSS feed. This notion of

eRAF Journal on Computing

Vol. 7, 2015. S-69

an asynchronous, many-to-many bus is essential in a distributed system

situation. A topic is typed, meaning that the type of data published (the

message) is always structured in the same way. Nodes send and receive

messages on topics.

Messages: A message is a complex data structure which is combination of

primitive types (character strings, Booleans, integers, floating point, etc.)

and messages which are recursive structures.

Services: A service is a method for synchronous communication between

two nodes. The idea is similar to that of a remote procedure call.

Bags: Bags are formats for storing and playing back message data. This

mechanism makes it possible, for example, to collect data measured by

sensors and subsequently play it back as many times as desired to simulate

real data. It is also a very useful system for debugging a system after the

event.

These concepts are used by the system as it is running, whereas the ROS

File System is a static concept.

C. Urdf

URDF (Unified Robot Description Format) is an XML format used to

describe an entire robot in the form of a standardized file. Robots described

in this way can be static or dynamic and the physical and collision properties

can be added to it. Besides the standard, ROS offers several tools used to

generate, parse or check this format. For example, URDF is used by the

Gazebo simulator to represent the robot [4]

IV. ADVANTAGE AND DISADVANTAGES OF ROS

ROS was designed to be as distributed and modular as possible so that

people can decide how much of ROS they want to use.

Another key advantage of ROS is its community. ROS has grown a lot in

last several years and now has worldwide community. The community is

very active and people are contributing with various packages, ports and

other contributions.

Good thing about ROS is that it is under standard three-clause BSD

license, which is very permissive open license and people to reuse ROS in

commercial and private projects.

Ros is also scalable, it can be implemented in systems with ARM CPU up

to the XEON clusters.

eRAF Journal on Computing

Vol. 7, 2015. S-70

Other advantages of ROS, as mentioned before, are that ros is peer-to-

peer, multi-language, tool-based and thin.

ROS is not yet truly cross-platform. While there are libraries to use ROS

with Windows, OSX and Android they are not currently fully supported.

 Many of disadvantages are addressed in ROS 2.0. Some of current needs

are [6]:

Teams of multiple robots: while it is possible to build multi-robot systems

using ROS today, there is no standard approach, and they are all somewhat

of a hack on top of the single-master structure of ROS.

Small embedded platforms: small computers, including “bare-metal”

microcontrollers, should be first-class participants in the ROS environment,

instead of being segregated from ROS by a device driver.

Real-time systems: real-time control should be directly supported in ROS,

including inter-process and inter-machine communication.

Non-ideal networks: ROS should behave as good as possible when

network connectivity degrades due to loss and/or delay, from poor-quality

Wi-Fi to ground-to-space communication links.

Production environments: while it is vital that ROS continue to be the

platform of choice in the research lab, ROS-based lab prototypes should be

able to evolve into ROS-based products suitable for use in real-world

applications.

Prescribed patterns for building and structuring systems: ROS should

provide clear patterns and supporting tools for features such as life cycle

management and static configurations for deployment.

V. PORTS AND INTEGRATIONS

 Ros is ported and integrated into many robots and systems, some of which

are [3]:

• ABB, Adept, Motoman, and Universal Robots are supported by ROS-

Industrial

• Baxter at Research Robotics, Inc.

• HERB developed at Carnegie Mellon University in Intel's personal

robotics program

• Husky A200 robot developed (and integrated into ROS) by Clearpath

Robotics

• PR2 personal robot being developed at Willow Garage

eRAF Journal on Computing

Vol. 7, 2015. S-71

• rosbridge protocol and server developed by Brown University to enable

any robot or computing environment to integrate with ROS using JSON-

based messaging, such as for common web browsers, Matlab, Microsoft

Windows, OS X, and embedded systems

• Shadow Hand – A Fully dexterous humanoid hand.

• STAIR I and II robots developed in Andrew Ng's lab at Stanford

• SummitXL - Mobile robot developed by Robotnik, an engineering

company specialized in mobile robots, robotic arms and industrial

solutions with ROS architecture.

• Nao humanoid: University of Freiburg's Humanoid Robots Lab developed

a ROS integration for the Nao humanoid based on an initial port by

Brown University

• UBR1 developed by Unbounded Robotics, a spin-off of Willow Garage.

A. Integration with other libraries

 Ros provides seamless integration with various open source projects, some

of which are [7]:

Gazebo - a 3D indoor and outdoor multi-robot simulator, complete with

dynamic and kinematic physics, and a pluggable physics engine. Integration

between ROS and Gazebo is provided by a set of Gazebo plugins that

support many existing robots and sensors.

OpenCV - the premier computer vision library, used in academia and in

products around the world. OpenCV provides many common computer

vision algorithms and utilities that you can use and build upon.

PCL - the Point Cloud Library - a perception library focused on the

manipulation and processing of three-dimensional data and depth images.

PCL provides many point cloud algorithms, including filtering, feature

detection, registration, kd-trees, octrees, sample consensus, and more

MoveIt! - a motion planning library that offers efficient, well-tested

implementations of state of the art planning algorithms that have been used

on a wide variety of robots, from simple wheeled platforms to walking

humanoids.

VI. OTHER MULTI-PLATFORM OPERATING SYSTEMS AND MIDDLEWARE

 Beside ROS there are few other operating systems or robot middleware

worth mentioning [4]:

eRAF Journal on Computing

Vol. 7, 2015. S-72

Microsoft Robotics Developer Studio: a multiplatform system, created by

Microsoft. It is free and provides a simulation tool; however, it is only

compatible with Windows and is programmed with a managed .NET

language [8].

NAOQ: open source robotics system produced for the NAO robot by

Aldebaran Robotics, and programmed in C++ or Python.

URBI: produced by the French company Gostai. URBI is a good multi-

platform, open source and offers its own scripting language (URBIScript),

although it is also programmed in C++.

VII. IMPLEMENTATION

 At the moment only Ubuntu is officially supported, but there are also

experimental solutions for OS X, Arch Linux and other platforms.

 Newest release of ROS is Jade Turtle. There is also a LTS version, Indigo

Igloo, which is supported for five years.

 ROS can be installed in several different ways. Supported ways of

installation are installing ROS from Debian packages and from source code.

 The packages are more efficient than source-based builds and they are

preferred way of installing ROS.

 ROS can also be installed as virtual machine. There is Nootrix built VM

which is Ubuntu 14.04 LTS with ROS Indigo Igloo preinstalled. It is in .ova

format so it can be opened in VirtualBox or other virtualization software.

 There is also a two-line installation script for installing ROS Indigo on

desktop PCs. The script is tested in Ubuntu 14.04 LTS and Ubuntu 13.10

[3].

ROS code is separated hierarchically [3] (Pic. 2.).

Pic. 2. ROS code hierarchy

Repository is collection of code from certain development group.

eRAF Journal on Computing

Vol. 7, 2015. S-73

ROS follows federated repository model, so instead of having one place

for all ROS packages, users and developers are encouraged to host their own

ROS packages.

Each repository can be managed and licensed by the respective maintainer

who retains direct ownership and control over code.

Stack contains code of a particular device.

Stacks in their most basic form:

stack_name

stack_name/package_name_1

stack_name/package_name_n

stack_name/stack.xml

Stack is a cluster of nodes that does something useful. ROS is able to

instantiate a cluster of nodes with a single command, once the cluster is

described in an XML file. Sometimes multiple instantiations of a cluster are

desired. For example, humanoid robots will need to instantiate two identical

arm controllers. To accomplish this ROS pushes nodes and entire roslaunch

cluster-description files into a child namespace, which ensures that there

will not be name collisions. Basically ROS prepends a string (the

namespace) to all node, topic, and service names, without requiring any

modification to the code of the node or cluster. Stack is atomic unit of

"releasing", a collection of packages for distribution [3].

Packages are separate modules that provide different services.

Packages in their most basic form:

package_name

package_name/Makefile

package_name/CMakeLists.txt

package_name/package.xml

Package is atomic unit of building and can contain anything: nodes,

messages, tools, launch files, etc. The goal of packages is to provide code

reusability. Package is a directory that has package manifest in it [3].

Package manifest is an XML file called package.xml which must be

included. This file defines properties about the package such as package

name, version, description, maintainer license and dependencies on other

packages.

Metapackages – they are specialized packages that references one or more

related packages which are loosely grouped together.

eRAF Journal on Computing

Vol. 7, 2015. S-74

Message (msg) types – ROS uses simplified message description language

to describe messages that nodes publish. A .msg files, which are stored in

/msg subdirectory of a package, have two parts: fields and constants. Fields

are part of data that is sent inside message while constants define useful data

for interpreting those fields.

Service (srv) types - ROS uses simplified service description language to

describe services.

It is built upon the msg format to enable request/response communication

between nodes. Service descriptions are stored in .srv files which are located

in the srv/ directory of a package.

Nodes are executables that exist in each model and they perform

computations.

Pic. 3. Interconnection of nodes and their communication

Nodes are interconnected in a graph and communicate using streaming

topics, RPC services and the Parameter Server (Pic. 3.).

They can be located on different machines. ROS has several benefits from

using nodes. They give additional fault tolerance because crashes are

isolated to a particular node. The code complexity is also reduces and

implementation details are well hidden since nodes expose minimal API to

the rest of the nodes.

Nodes have a graph resource name which acts as unique identifier that

can be addressed by rest of the system.

They also have a node type which are package resource names that contain

node’s package name and name of the node itself [3].

rxgraph is a command-line tool that is used for displaying connection

graph, i.e. the ROS nodes that are currently running and also ROS topics

that connect them (Pic. 4.).

eRAF Journal on Computing

Vol. 7, 2015. S-75

Pic. 4. Connection graph of simple publisher and subscriber

 Following is the information about rxgraph shown in (Pic. 4.).

Nodes:

/talker - "Hello" – sends message

/listener - "Hello" – receive message

/rosout - processes logs

Topics:

/chatter - used when talker publishes message for listener

/rosout - used to log messages to /rosout node

Result example:

data: hello world 290790

 …

A ROS node is written with the use of a ROS client library, such as roscpp

or rospy.

Nodes can communicate using two protocols [3]:

-Topics are named buses over which nodes exchange messages and they

are used for asynchronous communication.

They have anonymous publish/subscribe semantics which separates

information production from its use. Nodes do not know who they

communicate with. Nodes that want to acquire data subscribe to a particular

topic, while nodes that generate data publish to a particular topic.

Topics are typed by Ros Message (message.msg). Directory used for topics

discovery is ROS Master. Topic supports concurrent publishers and

subscribers. The order of publish/subscribe messages is irrelevant.

-Services are defined pairs of messages, one is used for request and one

for the reply.

Services are used for synchronous communication. Client calls service by

sending request and then waiting for the reply. This is presented as remote

procedure call. A client can establish a persistent connection to a service

which enables higher performance but with the cost of less robustness to

service provider changes.

eRAF Journal on Computing

Vol. 7, 2015. S-76

Services are typed by a Ros Service (service.srv). Directory used for service

discovery is ROS Master. There can be multiple simultaneous clients

connected to a service.

The Roscore consists of rosmaster, parameter server and log aggregator

[3].

Rosmaster provides naming and registration services to the rest of nodes.

It is used for tracking publishers and subscribers to topics and services. His

role is to enable individual nodes to find one another. When nodes are

connected thy communicate peer-to-peer. Rosmaster uses XMLRPC API.

Parameter server is centralized parameter repository. It provides

parameter access to all nodes. It is visible globally so tools can inspect

configuration state of the system and modify if necessary. The Parameter

server is implemented using XMLRPC and runs inside ROS Master so his

API is accessible by normal XMLRPC libraries.

A. Ros networking

ROS has certain requirements of the network configuration:

- There must be complete, bi-directional connectivity between all pairs of

machines, on all ports.

- Each machine must advertise itself by a name that all other machines

can resolve. This is done by setting ROS_HOSTNAME environmental

variable of each machine with its own name. Also, a URI of the master

node should be provided. There should be only one master node, so its

URI should be replicated on all machines by setting

ROS_MASTER_URI environmental variable.

A virtual network needs to be created if there are firewalls, or other

obstacles, between machines that use ROS to connect them. Use of Wi-Fi

network is more convenient for controlling mobile robots.

VIII. CONCLUSION

 ROS operation system provides a powerful infrastructure for developing

robotic applications. It is backed by great community which contributes

every day. It has potential to grow and, while it is good as it is, it has a

plenty of space for improvement. It is growing fast and aims to become

eRAF Journal on Computing

Vol. 7, 2015. S-77

standard in robotic application development. Even though people are

working on making ROS available on various platform, only Ubuntu is

officially supported so ROS is not yet cross-platform. Future of ROS is

bright and there is already work on ROS2.0 by Open Source Robotics

Foundation which will address some of disadvantages of current ROS,

implement new design decisions and expand ROS functionality.

ACKNOWLEDGMENT

The research in the paper is funded by the Serbian Ministry of Education

Science and technological development under the grants TR-35003, III-

44008. The paper is partially supported by FLIRT HORIZON 2020, funded

by the European Commission's Research and Innovation Framework

Program H-2020 (2014-2020) by the Marie Skłodowska-Curie actions

Directorate-General for Education and Culture. European Commission

under Grant Agreements No. 633398, 633369 and 633376; the paper is

partially supported by the project named „High speed and high precision

robots-path planning, dynamics and control (HIGH-SP ROBOTS)”, Serbian-

Chinese Science & Technology cooperation, Institute Mihailo Pupin and

University of Anhui, School of Mechanical Engineering.

REFERENCES

[1] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler and A.

Ng “ROS: an open-source Robot Operating System”

http://ai.stanford.edu/~ang/papers/icraoss09-ROS.pdf

[2] M. Quigley, E. Berger, and A. Y. Ng, “STAIR: Hardware and Software Architecture” in

AAAI 2007 Robotics Workshop, Vancouver, B.C, August, 2007.

[3] http://www.ros.org

[4] http://www.generationrobots.com/en/content/55-ros-robot-operating-system

[5] http://library.isr.ist.utl.pt/docs/roswiki/ROS(2f)Concepts.html

[6] http://design.ros2.org

[7] http://www.willowgarage.com/pages/software/ros-platform

[8] J. Jackson, “Microsoft robotics studio: A technical introduction” in IEEE Robotics and

Automation Magazine, Dec. 2007, http://msdn.microsoft.com/en-us/robotics.

